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SUMMARY

An optimal control problem with bounded state variables is transformed
into a Lagrange problem by means of differentiable mappings which take some
Euclidean space onto the control and state regions. Whereas all such
mappings lead to a Lagrange problem, it is shown that only those which
are defined as acceptable pairs of transformations are suitable in the
sense that solutions to the transformed Lagrange problem will lead to
solutions to the original bounded state problem and vice versa. In
particular, an acceptable pair of transformations is exhibited for the
case when the control and state regions are right parallelepipeds.

Finally, a description of the necessary conditions for the bounded state

problem which were obtained by this method is given.



INTRODUCTION

Optimal control problems have been analyzed in a variety of ways by
means of the Calculus of Variations. Perhaps the most well known technique,
described in a paper by Berkovitz (1), involves adjoining additional variables
to the system, commonly called slack variables, in order to transform inequality
constraints into differential equation constraints. In the new problem all
variables are unrestricted; hence, the classical theory can be applied.
Necessary conditions for the Bolza problem are then translated into necessary
conditions for optimal control. These conditions include the maximum principle
of Pontryagin (20) which is seen to be a consequence of the Euler Lagrange
equations and the Weierstrass necessary condition. In a paper (12) and in
his book (13), Hestenes used a similar method to study optimal control problems.
This method of slack variables has been widely used by a number of authors for
some time. In fact, as early as 1937, F. A. Valentine (26) applied it to
Lagrange problems with differential inequalities as added side conditions.

Later Berkovitz (2) applied this technique to problems with bounded state
variables. He obtains essentially the results of Gamkrelidze in Chapter VI of
(20) for the nonlinear problem with inequality constraints involving only
state variables. Hestenes' results were extended by Russak (21) and Guinn (10)
to include the bounded state case.

Another approach, described by Kalman (15), uses the Hamiltonian theory of
the Calculus of Variations as it was developed by Caratheodory (5). Sagan also
utilizes this method in his book (23) where the maximum principle is shown to
follow from Caratheodory's lemma in a rather simple way. However, as is pointed

out by the author, the usefulness of this technique is quite limited due to the



fact that unnecessary assumptions must be made regarding the differentiability
of Hamilton's characteristic function and the existence of an admissible set:
of inception.

In this paper a technique described by Park in (18) and (19) and applied
to a simple problem by this author in (11) is to be utilized to study properties
of solutions to various general problems in Optimal Control Theory, in particuliar-
those with bounded state variables. By means of an appropriate transformation
of variables, optimal control problems are converted into Lagrange problems of
the Calculus of Variations. This is accomplished by using mappings satisfying
certain properties which take some Euclidean space onto closed control and
state regions.

Of course, the fundamental question must be considered as to undér what
conditions is the transformed problem equivalent to the original one, That is,
one must know that solutions to the new problem lead to solutions of the »ld
one and vice versa. This equivalence question is discussed in great generality
by Park in (18); in this paper it will only be considered in relation to

bounded state problems.



ANALYSIS

I. The Problem.

Let 2 be a subset of Rm, Euclidean m~space, and T a subset of R". The
sets Q and T will be referred to as the control region and state region
respectively. Let xo and x! be points in Tj x° will be referred to as the

! the terminal point.

initial point and x
We now consider a differential system whose state at time t is

characterized by a vector x(t) = (xl(t),...,xn(t)) in T and whose value is
determined or controlled at that time by a vector u(t) = (ul(t),...,um(tﬁ) in
2, the so-called control vector. Let the system be defined by the differential
equations % = f£(t,x,u) where f is assumed to be a continuously differentiable
vector-valued function defined on R x I' X @ where R is the real line. This

is a non-autonomous system of n non-linear first order differential egquatiomns
in the n + m unknowns x and u. Let an initial time to be given and designate
the final time, which is variable, by t;. In addition, let fo(t,x,u) be a
continuously differentiable real valued function defined on R x I x Q. We

will refer to its integral over the interval [to’tI] as the cost functional.

The problem to be considered is the following:

PROBLEM 1
Find a sectionally continuous control u(t) defined on [to’tl] for some

t, > t, so that there exists x(t), sectionally smooth, defined on [to’tl]

1
such that

(1) =x(t) = f(t,x(t),u(t)) for all t ¢ [to’tl] for which x(t) is defined,
(2) x(t) €T and u(t) € Q for all t ¢ [to,tl],

(3) x(to) = x° and x(tl) = xl,

t
(4) f 1fo(t,x(t),u(t))dt is minimized.

t
0



This is an example of an optimal control problem_with restricted state
variables. Such a control u(t) satisfying (1), (2), and (3) is called an
admissible control. A control for which (1), (2), (3), and (4) is satisfied
is called an optimal control, and its corresponding x(t) is called an optimal

trajectory.

II. Review of Literature

This type of problem has been considered by a number of people. The
papers by Berkovitz (2), Guinn (10) and Russak (21) have already been discussed
in the introduction. They used the method of slack variables to translate
necessary conditions for the Bolza problem into necessary conditions for the
above problem.

Other approaches have been more direct and do not utilize the Calculus of
Variations. Gamkrelidze (20) adjoined the total time derivative of the state
constraint to the cost functional and treated the resulting problem in the
same fashion as he and Pontryagin did for the unconstrained problem. His
"regularity' assumption, which also arises in this paper but for different
reasons, is made in order to insure that the control explicitly appears in
the derivative of the constraint so that it directly influences his new cost
functional.

In conjunction with numerical applications, Bryson et al. (4) developed
techniques for avoiding this assumption in some cases by using higher order
derivatives of the constraint. Results related to this are also demonstrated
in a paper by Speyer and Bryson (24).

Dreyfus in (8) and (9) uses the method of dynamic programming to obtain
results similar to those of Berkovitz. In fact, Berkovitz and Dreyfus compared

their previous results in a joint paper (3) in 1965.



The penalty function approach is entirely different from all of the abowe,
This method, first described by Chang in (6) and (7), involves the following.
Instead of attempting a direct solution, an unconstrained problem is considered
wherein the original cost functional is augmented by a non-negative penalty
function which sharply increases the cost associated with trajectories which
violate the state constraints. By using sequences of cost functionals involving
more and more severe penalties it is to be expected in many cases that the
desired solution to the original problem will be obtained as the limit of the
solution of the approximate problem. This technique has been subsequently
refined and further results obtained by Russell (22) and Jacobson et al. (14).

In (16) Khrustalev discusses the very difficult question of sufficiency
for constrained state problems, and finally McIntire and Paiewonsky, in an

expository paper written in 1964, survey the techniques known at that time.

ITI. Transformation into a Lagrange Problem

We shall now state the method to be used herein to treat Problem 1 as a
Lagrange problem in the Calculus of Variations.

Consider the functions ¥ and ¢ defined so that ¥Y: Rk > Q and ¢: Rl > T
where k and % are natural numbers. Assume that both ¢ and ¢ are onto and
continuously differentiable. Then if we let x = ¢(y) and u = ¥(2) and restate

our original prgblem in terms of the new variables y = (yl,...,yz) and

z = (21,...,2k) we obtain the following:

PROBLEM 2
find a sectionally continuous z(t) defined on [to,tl] for some t, > to so

that there exists y(t), sectionally smooth, defined on [to’tl] such that

(0" %;*g G (£)) F(£) = £(t,6(y(£)), ¥(2(t))) for all t e [t ,t,] for

which y(t) is defined,



(' y(t) ¢ Rz and z(t) ¢ Rk for all t E_Eto,tll.

(3" $G(t)) = % and ¢(y(c)) = x,

(ON Jtlfo(t,¢(y(t)), P€x(t)))dt is minimized.
t:O

In (D! %; is used to denote the n X % matrix of partial derivatives of
the components of ¢ with respect to the components of the vector y. Notice
also that this new problem is unconstrained in the sense that the new variables
y and % are allowed to take on any values in Rz and Rk respectively.

The variable z which takes the place of the control u is introduced as a
derivative so that the new problem will satisfy the hypotheses for the necessary
conditions to the Lagrange problem which require that solutions, in this case
y(t) and z(t), be sectionally smooth. That is, a sectionally smooth solutiom
of Problem 2, y(t) and z(t), will lead to a sectionally continuous control
u(t) = ¥(2(t)) and a sectionally smooth trajectory x(t) = ¢(y(t)) as its
counterpart in Problem 1.

We may now view Problem 2 as a Lagrange pxroblem with unknowns y and g,
conetraining differential equations given in (1)', boundary conditions (3)'
and with (4)' giving the functional to be minimized. Hence all the well known
e¢lassical theery associated with this problem may be applied in order to find
solutiene, A full discussion of this theory is contained in Chapter 6 of (23).

However, beforé we proceed farther along these lines, we must establish
under what conditiens is Problem 2 -actually equivalent to Problem 1, in tha
sense that a solufion to Problem 2 leads to a solution of Problem 1 and vice '
versa. That i1s, we muat beé able to translate necessary and gufficient
conditiense faor y(t) and z(t) in Problem 2 into necessary and sufficient
conditions for u(t) = Y(2(t)) and x(t) = ¢(y(t)) as optimal comntrols and

optimal trajectories in Problem 1. The next two theorems provide am anewer

to this questioen.



DEFINITION 1-

The mappings ¥ and - ¢ shall be called an acceptable pair of transformations

provided the following are true:
(1) ¢ Rk > Q, ¢: Rl + I for some k and £ and both are onto aﬁd continuously
.differentiable;
(2) for any sectionally smooth x(t) defined on some interval [to,t1] such
that x(t) € T for all t, there exists a sectionally smooth y(t) defined
on [t_,t,] such that y(£) ¢ EY and ¢(y(t)) = x(t) for all t & [t .t 15
(3) for any sectionally continuous u(t) defined on some interval [to’tll

such that u(t) € Q for all t, there exists a sectionally continuous

z(t) defined omn [to,tl] such that P(2(t)) = u(t) for all t ¢ [to’tll'

THEOREM 1
If ¢ and ¢ are an acceptable pair of transformations and z(t), y(t) defined
on [to,tl] yield a solution to Problem 2 then u(t) = P(z(t)) and x(t) = ¢(y(t))

yield a solution to Problem 1.

Proof:

We shall verify that x(t) and u(t) satisfy (1), (2), (3) and (4) of Problem
1. Since x(t) = ¢y(y(t))9(t) = £(t,0@y(e)),v(z(t))) = £(t,x(t),u(t)) we see
that (1) is satisfied. Clearly (2) follows from (1) of Definition 1, and
x(t) = o(y(t)) = x°, x(t)) = ¢(y(t))) = x!, so (3) is satisfied. Now
suppose (4) were not true, then there would exist x(t), u(t) and E& satisfying

(1), (2) and (3) such that

t t
J lfo(t,§(t),ﬁit))dt < J lfo(t,x(t),u(t))dt.

t t
0o 0

Now applying (2) and (3) of Definition 1 there exists ;Kt) and z(t) such that

x(t) = ¢(y(t)) and ult) = ¥v(z(t)) for all t e [to;El]. Then we have



0,7 (1) T(E) = %(t) = £(£,%(£),T(t)) = £(t, d(F(t)),¥(z(t))) for all t and

moreover xo =';(to) = ¢(§(to)), x! =‘;(t1) = ¢C;(t1)). However,

_ - T _
J lfo(t,¢(y(t)),w(z(t)))dt = J lfo(t,x(t),u(t))dt <
t

tO o]

t t
f V£ (e,%(0) u(e))de = J ' (6, 80y (8)), 9(2(D))) dt
t t

) )
which contradicts the fact that y(t) and Z(t) yield a solution for Problem 2.
Thus (4) must be true and hence x(t) and u(t) yield a solution to Problem 1.

The next theorem is the converse of Theorem 1.

THEOREM 2

If ¥ and ¢ are an acceptable pair of transformations and u(t), x(t) defined
on [to’tl] yield a solution to Problem 1 then any sectionally smooth y(t) and
z(t) such that x(t) = ¢(y(t)) and u(t) = P(2(t)) for t ¢ [to,tl] yvield a
solution to Problem 2.

Proof:

We know that at least one such y(t) and Z(t) exist by (2) and (3) of
Definition 1. We must therefore show that such a y(t) and z(t) sétisfy ',
(2)', (3)' and (4)' of Problem 2. Notice that ¢y(y(t))i(t) = %(t) = £(t,x(t),u(t))
= £f(t,o(y(t)),¥(2(t))); thus we have that (1)' is true. Moreover (2)' is
trivially satisfied and since ¢(y(to)) = x(to) = x° and ¢(y(t1)) = x(tl) = x1,
(3)' is also. Now if ;(t) and é(t) defined on [to,Ei] satisfies (1)', (2)',

(3)' and

t _ . t
f £ (£,6G(0), 0G0t < J e (E,0(7(0), ¥ (2(0)))dt
t t

0 o
then it is easily seen that x(t) = ¢(y(t)) and u(t) = y(z(t)) will contradict
the optimality of x(t) and u(t). Thus y(t) and 2(t) must yield a solution to

Problem 2.



The following corollary follows immediately from Theorems 1 and 2. -

COROLLARY 1

If ¢ and é-are an acceptable pair of transformations then any necessary
or sufficient condition for y(t) and 2(t) to be a solution of Problem 2 yields
.a necessary or sufficient condition for x(t) and u(t) to be a solution of
Problem 1 when the condition is restated in terms of x(t) = ¢(y(t)) and
u(t) = ¥(z(t)).

A much more general discussion of the equivalence of minimization problems

is contained in (18), particularly in regard to unconstrained problems.

IV. The Control and State Regions as Right Parallelepipeds

Consider Problem 1 with

A

by, 1= 1l,...,m} and

di, 1= l,...,n}

m
{u e R: a, < u,
1= 1

Le]
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where a,,b,,c. and d, are real numbérs such that a, < b, and ¢, < d, for edch'1.
i’71i?71 i _ i i i i
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for i = 1,...,n.

THEOREM 3
For this choice of @, T', ¥ and ¢, the mappings § and ¢ constitute an

acceptable pair of transformationms.

10



Proof:

Since -1 < sin éi < 1 for all real numbers éi’ we have

(a, - b.) (b, - a,) (b, - a,)
i i i i .. i i
2 < 2 sin z, < ———5— and therefore
. (ai - bi) . (bi + ai) ) (bi - a,) s e (bi + ai) e
i 2 2 —_ 2 i 2 Ti
) (bi - ai) . (bi + ai) .
— 2 2 i

for i = 1,...,n.

Thus we see that P(2) € @ for all 2 ¢ R™. Similarly we can show that ¢(y) e
for all y ¢ R". Moreover P and ¢ are clearly continuously differentiable. Now
let u(t) be a sectionally continuous function defined on [to’tI] such that

u(t) € Q for all t ¢ [to’tl]' Define z(t) by

2ui(t) - (bi + ai)
(b. - a.)
1 1

z. (t) = sin
i

We first notice that each éi(t) is well defined for all t ¢ [to,t ]. This is

1
true since u(t) & Q means that a; f-ui(t) f-bi for i = 1,...,m and hence it
follows that a, — b, = 2a, - (b, + a.) < 2u,(t) -~ (b, + a,) < 2b, - (b, + a.)
i i i i i’ — 77 i i’ — 771 i i
=b, - a,.
Dividing this inequality by bi - a; we obtain

Zui(t) - (bi + ai)

-1 < < 1.
= (bi - ai) -

Hence the sin_l of the middle term in the above inequality is well defined.
Note that this argument yields that ¥ is onto since u(t) may in general be any
point of @ and clearly if Z is defined in the above fashion for any u e Q we

have $(2) = u. Moreover, since sin is a sectionally continuous function, we

see that the z(t) which we have defined will be sectionally continuous also.

11



Therefore ¥ satisfies condition (3) of Definition 1. If x(t) is a sectionally
smooth function defined on [to’tl] such that x(t) € T for all t ¢ [to,tl], we
can satisfy condition (2) of Definition 1 by defining

_ 2x,(t) = (4 + ;)
yi(t) = sin (di — ci) + 27 j(i,t)

for i = 1,...,n and t € [to,tl] where j(i,t) is an integer chosen for each i
and t to insure that yi(t) is not just sectionally continuous but also
sectionally smooth. Since sin (27mj) = 0 for all integers j, this term does not
affect the relationship ¢(y(t)) = x(t). Thus the theorem is proved and we have
shown that ¥ and ¢ are an acceptable pair of transformations.

We now have that for this particular choice of Q, I'y § and ¢ that Theorems
1 and 2 apply, and hence, in this case, Problem 1 is equivalent to Problem 2,

In the case that some of the components of u or x are to be unrestricted,
while the remainder are constrained between maximum and minimum values as
previously, one simply defines wi(é) = u, or ¢i(y) = X for those particular
ones and defines the rest of the components of Y and ¢ as is done previously
with the sine function. Clearly, in this case, the results of Theorem 3 also
follow. For numerical applications the previous formulation is more desirable
as in effect it covers both cases. When a component of u or x is to be
unrestricted, one simply inputs to the system maximum and minimum values of
the variable which are exceedingly large and exceedingly small respectively,
thus effectively eliminating the constraint.

In the case where 2 is the unit m~cube and I' is the unit n~cube we set
a;, = -1, bi =1 fori=1,...,m and c; = -1, di =1 fori=1,...,n. Then ¢
and ¢ reduce to Y(2) = u = sin 2z = (sin éi,...,sin ém) and ¢(y) = x = siny =
(sin y;,...,8in yn).

Examples of acceptable choices of § and ¢ correspoﬁding to more general

control and state regions are contained in (18).
12



V. Results.

Let us now consider Problem 1 with £ = {u € R : |ui| <1, i=1,...,m} and
T = {x ¢ R™: Ix I <1, i=1,...,n}, We then set ¢(y). = x = sin y and
¥(2) = u = sin Z. By Theorem 3 this choice of ¢ and ¢ constitute an
acceptable pair of transformations. Therefore, by Theorems 1 and 2, Problem
2 may be viewed as a Lagrange Problem and necessary conditions for solutions
to it may be transformed back into necessary conditions for solutions to
Problem 1, the bounded state problem. I shall now summarize some of the results
obtained by this approach.

Assume that x(t) and u(t) defined on [to’tl] yvield a solution to Problem 1.
At any time t € [to,tl], let x(t) be the subvector of x(t) consisting of its
components with absolute value one and let %(t) consist of all other components.
Subdivide the vectors f and A, the Lagrange multipliers, according to this same
rule. Similarly divide u(t) into u(t) consisting of all ui(t) with absolute
value one and G(t) containing all ui(t) for which lui(t)l < 1.

We assume that the regularity hypothesis holds for Problem 2, that is, that
the matrix of partials of the constraining differential equations with respect
to the variables involved has maximum row rank. This yields the following

theorem.

THEOREM 4

For all t ¢ [to’tl]’ ?ﬁ(t,x(t),u(t)) has maximum row rank.
As a corollary to this theorem we obtain that the total number of coordinates
of x(t) and u(t) with absolute value one cannot exceed the number of control
variables in the system or equivalently that the number of variables with
absolute value less than one must exceed the number of state variables.

Let the function H, called the Hamiltonian, be defined by

H(t,x,u,A) = Aofo(t,x,u) + A-f(t,x,u). 13



Then the Euler Lagrange Equations and Transversality Conditions for Problem 2

imply the following theorem.

THEOREM 5

There exists a vector function A(t) = (Al(t),...,kn(t)) defined on [to’tl]
which is continuous except possibly at the points where u(t) is not continuous
and a constant AO < 0 with (Ao,ll(t),...,An(t)) + 0 for all t ¢ [to,tl] such
that for i = 1,...,n either

[xi(t)l = 1 or A, (t) +H_ (t,x(t),ut),x(t)) = 0
i

and for j = 1,...,m either

luj(t)l = 1or H (t,x(t),u(t),A(t)) =0
J

on every smooth arc of x(t).

The Weierstrass—-Erdmann Corner Conditions also yield an analogous theorem -

for the bounded state case

THEOREM 6

For each i = l,...,n,Ai(t) is continuous except possibly at corners of x(t)
where |xi(t)| = 1. The function H(t,x(t),u(t),A(t)) is continuous for all
t e [to,tl].

In addition by applying the time transversality conditions, we find that
the Hamiltonian function evaluated along the solution has the value 0 for

t =t and t = t Moreover, by taking the total time derivative of the

1-

Hamiltonian along the solution we obtain:

THEOREM 7
If the function u(t) is differentiable except at its points of discon-

tinuity then H(t,x(t),u(t),A(t)) is differentiable except at these points and

14



%; H(t,x(t),u(t),A(t)) = H (t,x(t),u(t),A(t)).

The Legendre-Clebsch Condition also yields a generalization for the

bounded state case. Its corollary is perhaps a more usable form.

THEOREM 8

Let t € [to,tl] and Yy € Rm. Decompose Y into two subvectors 7y consisting
of those components of Y corresponding to coordinates of u(t) for which
Iuj(t)l = 1, and ¥ consisting of those coordinates of u(t) for which Iuj(t)l < 1.
Decompose the vector u similarly. Then for all ¥ and for all ¥ satisfying the
equations fGV =0,

'VZ(HU*ﬁ£¥) - ?-Hﬁﬁ? > 0 at time t,

where the % product of two vectors represents the vector the components of which

are the products of corresponding components of the two vectors.

COROLLARY 1
Let t € [to’tI] and U,u4, Y and ¥ be defined as in Theorem 8. Then each
component of the vector Hﬁ*ﬁ is non-negative, and for all ¥ such that fﬁ? = 0,

Y-H..¥ < 0.

ul
Finally we obtain a generalization of Pontryagin's Maximum Principle as

a consequence of the Weierstrass Necessary Condition.

THEOREM 9
Let t € [to’tl]’ Then for all v € R" such that lvil <lfori=1,.,.,m
and ?(t,x(t),v) = 0 where f consists of all coordinates of f corresponding to

components of x(t) for which ka(t)l = 1, the following is satisfied:
B(t,x(t),u(t),A(t)) » H(t,x(t),v,A(t)).

Therefore one can see that quite a comprehensive set of necessary conditions
for the bounded state problem may be obtained by using this transformation

approach.
15



CONCLUDING REMARKS

A method has been described whereby an optimal control problem with
bounded state variables may be transformed into an equivalent Lagrange
problem. This was accomplished by means of differentiable mappings which
take some Euclidean space onto the closed and bounded control and state
regions. Whereas all such mappings lead to a Lagrange problem, it has been
shown that only those which were defined as acceptable pairs of transformations
are suitable in the sense that solutions to the Lagrange problem lead to
solutions to the bounded state problem and vice versa. In particular, an
acceptable pair of transformations was exhibited for the case when the
control and state regions are right parallelepipeds.

In the last section some of the necessary conditions for the bounded
state problem which were developed using this transformation approach were

described.

16
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